|
|
#1
6УРЯТ @ 20.10.10 08:20 |
[пожаловаться]
|
|
Тема 11. Молекулярные силы в жидкостях. Поверхностное натяжение. Давление под изогнутой поверхностью. Капиллярные явления.
|
|
|
#4
6УРЯТ @ 20.10.10 08:29 |
[пожаловаться]
|
|
Свойства жидкостей. Поверхностное натяжение
Жидкость является агрегатным состоянием вещества, промежуточным между газооб¬разным и твердым, поэтому она обладает свойствами как газообразных, так и твердых веществ. Жидкости, подобно твердым телам, обладают определенным объемом, а по¬добно газам, принимают форму сосуда, в котором они находятся (см. § 2. Молекулы газа практически не связаны между собой силами межмолекулярного взаимодействия, и в данном случае средняя энергия теплового движения молекул газа гораздо больше средней потенциальной энергии, обусловленной силами притяжения между ними (см. § 60), поэтому молекулы газа разлетаются в разные стороны и газ занимает предоставленный ему объем. В твердых и жидких телах силы притяжения между молекулами уже существенны и удерживают молекулы на определенном расстоянии друг от друга. В этом случае средняя энергия хаотического (теплового) движения молекул меньше средней потенциальной энергии, обусловленной силами межмолекулярного взаимодей¬ствия, и ее недостаточно для преодоления сил притяжения между молекулами, поэтому твердые тела и жидкости имеют определенный объем.
Рентгеноструктурный анализ жидкостей показал, что характер расположения ча¬стиц жидкости промежуточен между газом и твердым телом. В газах молекулы движутся хаотично, поэтому нет никакой закономерности в их взаимном расположе¬нии. Для твердых тел наблюдается так называемый дальний порядок в расположении частиц, т. е. их упорядоченное расположение, повторяющееся на больших расстояниях. В жидкостях имеет место так называемый ближний порядок в расположении частиц, т. е. их упорядоченное расположение, повторяющееся на расстояниях, сравнимых с межатомными.
Теория жидкости до настоящего времени полностью не развита. Разработка ряда проблем в исследовании сложных свойств жидкости принадлежит Я. И. Френкелю (1894—1952). Тепловое движение в жидкости он объяснял тем, что каждая молекула в течение некоторого времени колеблется около определенного положения равновесия, после чего скачком переходит в новое положение, отстоящее от исходного на расстоя¬нии порядка межатомного. Таким образом, молекулы жидкости довольно медленно перемещаются по всей массе жидкости и диффузия происходит гораздо медленнее, чем в газах. С повышением температуры жидкости частота колебательного движения резко увеличивается, возрастает подвижность молекул, что, в свою очередь, является причи¬ной уменьшения вязкости жидкости.
На каждую молекулу жидкости со стороны окружающих молекул действуют силы притяжения, быстро убывающие с расстоянием (см. рис. 8; следовательно, начиная с некоторого минимального расстояния силами притяжения между молекулами можно пренебречь. Это расстояние (порядка 10–9 м) называется радиусом молекулярного действия r, а сфера радиуса r — сферой молекулярного действия.
Выделим внутри жидкости какую-либо молекулу А (рис. 96) и проведем вокруг нее сферу радиуса r. Достаточно, согласно определению, учесть действие на данную молекулу только тех молекул, которые находятся внутри сферы молекулярного дейст¬вия. Силы, с которыми эти молекулы действуют на молекулу А, направлены в разные стороны и в среднем скомпенсированы, поэтому результирующая сила, действующая на молекулу внутри жидкости со стороны других молекул, равна нулю. Иначе обстоит дело, если молекула, например молекула В, расположена от поверхности на расстоя¬нии, меньшем r. В данном случае сфера молекулярного действия лишь частично расположена внутри жидкости. Так как концентрация молекул в расположенном над жидкостью газе мала по сравнению с их концентрацией в жидкости, то равнодейст¬вующая сил F, приложенных к каждой молекуле поверхностного слоя, не равна нулю и направлена внутрь жидкости. Таким образом, результирующие силы всех молекул поверхностного слоя оказывают на жидкость давление, называемое молекулярным (или внутренним). Молекулярное давление не действует на тело, помещенное в жид¬кость, так как оно обусловлено силами, действующими только между молекулами самой жидкости.
Суммарная энергия частиц жидкости складывается из энергии их хаотического (теплового) движения и потенциальной энергии, обусловленной силами межмолекуляр¬ного взаимодействия. Для перемещения молекулы из глубины жидкости в поверхност¬ный слой надо затратить работу. Эта работа совершается за счет кинетической энергии молекул и идет на увеличение их потенциальной энергии. Поэтому молекулы поверх¬ностного слоя жидкости обладают большей потенциальной энергией, чем молекулы внутри жидкости. Эта дополнительная энергия, которой обладают молекулы в поверх¬ностном слое жидкости, называемая поверхностной энергией, пропорциональна площа¬ди слоя DS:
(66.1)
где s — поверхностное натяжение.
Так как равновесное состояние характеризуется минимумом потенциальной энер¬гии, то жидкость при отсутствии внешних сил будет принимать такую форму, чтобы при заданном объеме она имела минимальную поверхность, т. е. форму шара. Наблю¬дая мельчайшие капельки, взвешенные в воздухе, можем видеть, что они действительно имеют форму шариков, но несколько искаженную из-за действия сил земного тяготе¬ния. В условиях невесомости капля любой жидкости (независимо от ее размеров) имеет сферическую форму, что доказано экспериментально на космических кораблях.
Итак, условием устойчивого равновесия жидкости является минимум поверхност¬ной энергии. Это означает, что жидкость при заданном объеме должна иметь наимень¬шую площадь поверхности, т. е. жидкость стремится сократить площадь свободной поверхности. В этом случае поверхностный слой жидкости можно уподобить растяну¬той упругой пленке, в которой действуют силы натяжения.
Рассмотрим поверхность жидкости (рис. 97), ограниченную замкнутым контуром. Под действием сил поверхностного натяжения (направлены по касательной к поверх¬ности жидкости и перпендикулярно участку контура, на который они действуют) поверхность жидкости сократилась и рассматриваемый контур переместился в положе¬ние, отмеченное светло-серым цветом. Силы, действующие со стороны выделенного участка на граничащие с ним участки, совершают работу
где f — сила поверхностного натяжения, действующая на единицу длины контура поверхности жидкости.
Из рис. 97 видно, что DlDx = DS, т. е.
(66.2)
Эта работа совершается за счет уменьшения поверхностной энергии, т. е.
(66.3)
Из сравнения выражений (66.1) — (66.3) видно, что
(66.4)
т. е. поверхностное натяжение s равно силе поверхностного натяжения, приходящейся на единицу длины контура, ограничивающего поверхность. Единица поверхностного натяжения — ньютон на метр (Н/м) или джоуль на квадратный метр (Дж/м2) (см. (66.4) и (бб.1)). Большинство жидкостей при температуре 300 К имеет поверхностное натяжение порядка 10–2—10–1 Н/м. Поверхностное натяжение с повышением тем¬пературы уменьшается, так как увеличиваются средние расстояния между молекулами жидкости.
Поверхностное натяжение существенным образом зависит от примесей, имеющихся в жидкостях. Вещества, ослабляющие поверхностное натяжение жидкости, называются пoвеpxностно-активными. Наиболее известным поверхностно-активным веществом по отношению х воде является мыло. Оно сильно уменьшает ее поверхностное натяжение (примерно с 7,5 •10–2 до 4,5 • 10–2 Н/м). Поверхностно-активными веществами, пони¬жающими поверхностное натяжение воды, являются также спирты, эфиры, нефть и др.
Существуют вещества (сахар, соль), которые увеличивают поверхностное натяжение жидкости благодаря тому, что их молекулы взаимодействуют с молекулами жидкости сильнее, чем молекулы жидкости между собой. Например, если посолить мыльный раствор, то в поверхностный слой жидкости выталкивается молекул мыла больше, чем в пресной воде. В мыловаренной технике мыло «высаливается» этим способом из раствора.
|
|
|
#6
6УРЯТ @ 20.10.10 08:32 |
[пожаловаться]
|
|
. Капиллярные явления
Если поместить узкую трубку (капилляр) одним концом в жидкость, налитую в широ¬кий сосуд, то вследствие смачивания или несмачивания жидкостью стенок капилляра кривизна поверхности жидкости в капилляре становится значительной. Если жидкость смачивает материал трубки, то внутри ее поверхность жидкости — мениск — имеет вогнутую форму, если не смачивает — выпуклую (рис. 101).
Под вогнутой поверхностью жидкости появится отрицательное избыточное давле¬ние, определяемое по формуле (68.2). Наличие этого давления приводит к тому, что жидкость в капилляре поднимается, так как под плоской поверхностью жидкости в широком сосуде избыточного давления нет. Если же жидкость не смачивает стенки капилляра, то положительное избыточное давление приведет к опусканию жидкости в капилляре. Явление изменения высоты уровня жидкости в капиллярах называется капиллярностью. Жидкость в капилляре поднимается или опускается на такую высоту h, при которой давление столба жидкости (гидростатическое давление) rgh уравновеши¬вается избыточным давлением Dp, т. е.
где r — плотность жидкости, g — ускорение свободного падения.
Если r — радиус капилляра, q — краевой угол, то из рис. 101 следует, что (2s cosq)/r = rgh, откуда
(69.1)
В соответствии с тем, что смачивающая жидкость по капилляру поднимается, а несмачивающая—опускается, из формулы (69.1) при q<p/2 (cosq>0) получим положительные значения h, а при q>p/2 (cosq<0) — отрицательные. Из выражения (69.1) видно также, что высота поднятия (опускания) жидкости в капилляре обратно пропорциональна его радиусу. В тонких капиллярах жидкость поднимается достаточно высоко. Так, при полном смачивании (q=0) вода (r =1000 кг/м3, s = 0,073 Н/м) в ка¬пилляре диаметром 10 мкм поднимается на высоту h »3 м.
Капиллярные явления играют большую роль в природа и технике. Например, влагообмен в почве и в растениях осуществляется за счет поднятия воды по тончайшим капиллярам. На капиллярности основано действие фитилей, впитывание влаги бетоном и т. д.
|
|
|
#7
6УРЯТ @ 20.10.10 08:35 |
[пожаловаться]
|
|
Давление под искривленной поверхностью жидкости
Если поверхность жидкости не плоская, а искривленная, то она оказывает на жидкость избыточное (добавочное) давление. Это давление, обусловленное силами поверхност¬ного натяжения, для выпуклой поверхности положительно, а для вогнутой поверх¬ности — отрицательно.
Для расчета избыточного давления предположим, что свободная поверхность жидкости имеет форму сферы радиуса R, от которой мысленно отсечен шаровой сегмент, опирающийся на окружность радиуса r=Rsina (рис. 100). На каждый бес¬конечно малый элемент длины Dl этого контура действует сила поверхностного натяжения DF = s Dl, касательная к поверхности сферы. Разложив DF на два компонента (DF1 и DF2), видим, что геометрическая сумма сил DF2 равна нулю, так как эти силы на противоположных сторонах контура направлены в обратные стороны и взаимно уравновешиваются. Поэтому равнодействующая сил поверхностного натяжения, дей¬ствующих на вырезанный сегмент, направлена перпендикулярно плоскости сечения внутрь жидкости и равна алгебраической сумме составляющих DF1:
Разделив эту силу на площадь основания сегмента pr2, вычислим избыточное давление на жидкость, создаваемое силами поверхностного натяжения и обусловленное кривиз¬ной поверхности:
(68.1)
Если поверхность жидкости вогнутая, то можно доказать, что результирующая сила поверхностного натяжения направлена из жидкости и равна
(68.2)
Следовательно, давление внутри жидкости под вогнутой поверхностью меньше, чем в газе, на величину Dp.
Формулы (68.1) и (68.2) являются частным случаем формулы Лапласа,* опре¬деляющей избыточное давление для произвольной поверхности жидкости двоякой кривизны:
(68.3)
где R1 и R2 — радиусы кривизны двух любых взаимно перпендикулярных нормальных сечений поверхности жидкости в дайной точке. Радиус кривизны положителен, если центр кривизны соответствующего сечения находится внутри жидкости, и отрицателен, если центр кривизны находится вне жидкости.
*П. Лаплас (1749—1827) — французский ученый.
Для сферической искривленной поверхности (R1=R2=R) выражение (68.3) перехо¬дит в (68.1), для цилиндрической (R1=R и R2=Ґ) — избыточное давление
В случае плоской поверхности (R1=R2=Ґ) силы поверхностного натяжения избыточного давления не создают.
|
|
|
Ответить | | | |
|
|
|